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Abstract

Genome organization is critical for setting up the spatial environment of gene
transcription, and substantial progress has been made towards its high-resolution
characterization. The underlying molecular mechanism for its establishment is much less
understood. We applied a deep-learning approach, variational autoencoder (VAE), to
analyze the fluctuation and heterogeneity of chromatin structures revealed by single-cell
imaging and to identify a reaction coordinate for chromatin folding. This coordinate
connects the seemingly random structures observed in individual cohesin-depleted cells
as intermediate states along a folding pathway that leads to the formation of
topologically associating domains (TAD). We showed that folding into wild-type-like
structures remain energetically favorable in cohesin-depleted cells, potentially as a result
of the phase separation between the two chromatin segments with active and repressive
histone marks. The energetic stabilization, however, is not strong enough to overcome
the entropic penalty, leading to the formation of only partially folded structures and the
disappearance of TADs from contact maps upon averaging. Our study suggests that
machine learning techniques, when combined with rigorous statistical mechanical
analysis, are powerful tools for analyzing structural ensembles of chromatin.

Author summary

Chromatin folding, the dynamical process during which chromatin establishes its
three-dimensional organization for proper function, is of critical importance. However, it
is difficult to visualize and characterize due to challenges associated with live-cell
imaging at high temporal and spatial resolution. Here, using a combination of deep
learning and statistical mechanical theory, we demonstrate that great insight can be
gained into the folding process by analyzing snapshots of chromatin structures taken
across a population of cells. Though these static structures are not connected in time,
prior research on chemical reactions suggests that fluctuation within the conformational
ensemble provides valuable information for uncovering the reaction mechanism. Our
analysis reconciles the seemingly contradictory results from different experimental
techniques and supports the presence of multiple factors in organizing the chromatin.
As single-cell experimental data are becoming routine, the approaches presented here
could help with their interpretation to provide more insight into chromatin folding.
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Introduction 1

Three-dimensional genome organization is expected to play a crucial role in 2

transcription, DNA replication, and repair [1–5]. Significant progress has been made 3

towards its high-resolution characterization as a result of advances in 4

chromosome-conformation-capture based methods such as Hi-C [6,7]. These methods 5

approximate the 3D distance between pairs of genomic loci using contact frequencies 6

measured via proximity ligation and have revealed many conserved features of genome 7

packaging [8–12]. The emerging picture is a hierarchical organization for interphase 8

chromosomes that ranges from chromatin loops and topologically associating domains 9

(TADs) to compartments at kilobase and megabase scales, respectively [13–15]. 10

Hi-C and related techniques have also provided insight into the dynamical folding 11

process for the establishment of genome organization. In particular, the extrusion model 12

was proposed to explain numerous features of chromatin loops and TADs observed in 13

Hi-C contact maps [16,17]. It provides a detailed hypothesis on the folding process 14

driven by CCCTC-binding factor (CTCF) and cohesin molecules [18–20]. Several 15

predictions of the extrusion model have been validated with perturbative Hi-C [21–25] 16

and in vitro experiments [26,27]. Due to its unavoidable ensemble averaging, however, 17

Hi-C cannot capture the heterogeneity within a cell population, and the average picture 18

it presents may be insufficient to uncover the full complexity of genome folding [28,29]. 19

Many questions on genome folding remain outstanding and necessitate the 20

development of additional experimental techniques and theoretical tools of 21

interpretation. Recently, Zhuang and coworkers applied a super-resolution tracing 22

method [30–34] to characterize single-cell chromatin structures and observed substantial 23

cell-to-cell variation for TAD boundaries [34]. Upon cohesin depletion, in agreement 24

with population Hi-C experiments [25], their study suggested that TADs disappear in 25

ensemble averaged distance matrices (see Fig 1). Remarkably, however, chromatin 26

domains persist in individual cells. The biological implications of these imaging results 27

remain to be explored, and it is unclear what folds the chromatin in cells that lack 28

cohesin molecules and loop extrusion [35]. The large set of single-cell structures 29

provides unprecedented details into chromatin organization but calls for the use of 30

statistical mechanical approaches for its interpretation. 31

Here we combine deep learning techniques with statistical mechanical tools to 32

investigate the mechanism of genome folding. Specifically, we apply the variational 33

autoencoder (VAE) [36], a deep generative model, to analyze single-cell imaging data 34

and infer a one-dimensional reaction coordinate for chromatin folding. This folding 35

coordinate captures the variation of TAD boundaries in wild-type (WT) configurations 36

and establishes connections among the seemingly random structures in cohesin-depleted 37

cells. It suggests that these structures are intermediate states along the folding pathway 38

to chromatin configurations that bear a striking resemblance to those found in WT cells. 39

Connecting VAE probability of chromatin structures with the free energy cost of folding, 40

we find that the formation of WT-like structures remains energetically favorable even in 41

cohesin-depleted cells. This energetic stabilization leads to partially folded structures 42

with varying domain boundaries observed in single cells. The folding is penalized by the 43

configurational entropy, however, and without the presence of cohesin, chromatin cannot 44

fully commit to the WT-like structures. Our discovery of a weak compartment 45

boundary suggests that phase separation may contribute to chromatin folding in 46

cohesin-depleted cells, and its combination with loop extrusion could underlie the stable 47

and robust TAD formation in WT cells. 48
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Fig 1. Average distance maps determined using single-cell chromatin
structures collected from WT and cohesin-depleted (∆Cohesin) cells. The
chromatin segment is Chr21:34.6Mb-37.1Mb of HCT116 cells studied in Ref [34].
Boundary score profiles, whose peaks can be used to identify TAD boundaries and are
highlighted with red arrows, are shown below the maps. Detailed definition for the
boundary score is provided in the Methods Section. TAD annotation for WT cells is
also shown as a guide to the eye.

Results 49

Deep generative model differentiates chromatin structures from 50

two cell types 51

In Ref [34], Zhuang and coworkers applied single cell imaging to characterize the 52

organization of a chromatin segment (Chr21:34.6Mb-37.1Mb of HCT116 cells) at high 53

resolution. They found that, in contrary to the average distance map shown in Fig 1, 54

chromatin domains persist upon cohesin removal, an observation that cannot be 55

immediately explained by the loop extrusion model [16,17]. A detailed analysis of 56

individual chromatin structures from cohesin-depleted cells to reveal their similarity and 57

distinction from WT configurations could provide mechanistic insight into chromatin 58

folding. Such an analysis can be challenging, however, due to the high dimensionality of 59

the data set. Often, it is useful to reduce dimensionality and examine the collective 60

features of the structural ensemble. As demonstrated in prior studies [37–39], focusing 61

on coarsened collective features could facilitate the interpretation of conformational 62

heterogeneity by differentiating functionally meaningful and statistically significant 63

structural fluctuation from random noise. 64

We applied the deep learning framework, VAE, to carry out the dimensionality 65

reduction for an ensemble of chromatin structures from both WT and cohesin-depleted 66

cells. Compared to existing approaches, VAE not only compresses the data into a 67

low-dimensional space with non-linear embedding, but also produces a deep generative 68

model for estimating the statistical probability of each configuration [40–42]. This 69

quantitative aspect is crucial for connecting with thermodynamic analysis discussed in 70

later sections. We converted the 3D positions from single-cell imaging into binarized 71

contact matrices to provide rotationally and translationally invariant representations for 72

chromatin (see Methods Section for details). We then applied VAE over the binarized 73

representations to find two optimal latent variables in an unsupervised manner with an 74

encoder that compresses the contact matrices and a decoder that reconstructs the 75

inputs (Fig 2A). 76

As shown in Fig 2B, we found an apparent separation between WT (red) and 77

cohesin-depleted (green) cells in the two-dimensional latent space. For the convenience 78

of downstream analysis, from the two latent variables, we further defined a 79

one-dimensional coordinate as the distance from the decision boundary that best 80
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Fig 2. Chromatin folding coordinate derived using deep learning to
differentiate chromatin organization in WT and cohesin-depleted cells. (A)
Illustration of the variational autoencoder for data processing and low-dimensional
embedding. Single-cell chromatin images were first binarized into contact matrices that
can be fed into VAE as inputs. The encoder network further projects the high
dimensional contacts into a small set of latent variables that best preserve key features
of the original data. The decoder network then defines the reconstruction from latent
variables to contact matrices. (B) Scatter plot for WT and cohesin-depleted cells in the
two-dimensional space of latent variables learned from VAE. The black line represents
the decision boundary and the folding coordinate is defined as the distance from the
boundary. To avoid overplotting, only 5% of randomly sampled data are shown. For the
full dataset, if all the points that fall to the lower left of the boundary were all assigned
as cohesin-depleted cells and those on the upper right as WT cells, the misclassification
rate is 12.8%. (C) Probability distributions of the folding coordinate for chromatin
structures from WT and cohesin-depleted cells. (D) Correlation between the folding
coordinate and the fraction of contacts formed within the WT TADs. Error bars
represent one standard deviation of uncertainty.

separates the two cell types (Fig 2B). We identified the boundary with the support 81

vector machine [43], and WT and cohesin-depleted cells exhibit the largest difference 82

along the direction perpendicular to the boundary. Projecting chromatin configurations 83

onto the folding coordinate leads to a clear separation between the corresponding 84

probability distributions as well (Fig 2C). On the other hand, the two distributions 85

along the direction perpendicular to the folding coordinate (i.e., the direction along the 86

SVM decision boundary) overlap significantly (see S1 Fig). The Kullback-Leibler (KL) 87

divergence that quantifies the distinction between the two one-dimensional probability 88

distributions is 2.1, a value that is comparable to the two-dimensional counterpart (2.0). 89

Therefore, the one-dimensional coordinate is equally effective in differentiating 90

chromatin structures from the two cell types. It is worth pointing out that we processed 91

the same structural ensemble using principal component analysis (PCA) and K-means 92

clustering as well (S2 Fig and S3 Fig. Neither approach separates the two cell types as 93

well as the one-dimensional variable identified here. 94

The biological significance of the one-dimensional coordinate is evident from its 95

correlation with the fraction of TAD contacts (Fig 2D), which is defined as the ratio 96
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between the number of contacts formed inside the two TADs and the total number of 97

contacts. We emphasize that the VAE coordinate was designed to capture the intrinsic 98

variation within the dataset. Its correlation with the fraction of TAD contacts suggests 99

that not only the average difference between the two cell types can be understood from 100

the TAD structure, but the conformational heterogeneity from individual cells is also 101

related to the degree of TAD formation as well. 102

Folding coordinate reveals TAD formation in cohesin-depleted 103

cells 104

To more closely examine the relationship between the VAE coordinate and TAD 105

formation, we characterized the variation of average distance maps along the VAE 106

coordinate. These maps were determined using chromatin structures from either WT or 107

cohesin-depleted cells. The number of cells at various values of the folding coordinate 108

are listed in S1 Table and S2 Table. 109

As shown in Fig 3A, for WT cells, we find that the VAE coordinate captures the 110

heterogeneity of chromatin organization both within a single TAD and across TAD 111

boundaries. For example, chromatin in most cells with the coordinate less than 1.2 112

exhibits two TADs with a separating boundary at 36.1 Mb. This boundary coincides 113

with the one found in the average distance matrix (Fig 1) and in Hi-C contact map [25]. 114

The contacts within each TAD, however, can vary significantly as the coordinate 115

increases. In particular, the emergence of sub-TADs gives rise to more compact 116

chromatin with decreased spatial distances, and correspondingly, the colormap varies 117

from red to yellow. Interestingly, we also find a significant population of cells, i.e., those 118

with the VAE coordinate larger than 1.2, with a shifted TAD boundary at 36.4 Mb. 119

This chromatin reorganization could alter the regulatory environment for genes (e.g., 120

RCAN1 and KCNE1) within this region and may impact their expression profiles. 121

Fig 3. Variation of chromatin distance maps along the folding coordinate
for WT and cohesin-depleted cells. Values of the folding coordinate are provided
on top of the maps. Boundary score profiles are shown below to highlight the position
of TAD boundaries with red arrows.
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Remarkably, for cohesin-depleted cells (Fig 3B), variation in distance matrices along 122

the VAE coordinate highlights the gradual formation of chromatin structures with 123

striking resemblance to those found in WT cells. For example, for cells with VAE 124

coordinate values between -1.6 and -0.8, the chromatin segment appears to adopt open, 125

extended configurations and there is no prominent feature in the distance matrices. At 126

large values (≥ 0.0), chromatin adopts two domain-like structures with a boundary 127

identical to that found in WT cells. We note that the observed structural ordering only 128

become apparent after averaging and the conformational ensembles at individual folding 129

coordinates can exhibit substantial heterogeneity (see S4 Fig, S5 Fig, and S6 Fig). 130

Close examination of the distance matrices reveals additional subtlety of chromatin 131

folding in cohesin-depleted cells. In particular, though both share similar TAD 132

boundaries, the folded chromatin structures in cohesin-depleted cells are less compact 133

and do not exhibit fine sub-TADs as those from WT cells. In addition, the VAE 134

coordinate also uncovers off-pathway configurations at values less than -1.6. In these 135

cells, chromatin exhibits a single domain at the end of the genomic region with a 136

boundary quite different from that of WT cells. This domain must unfold before 137

chromatin can transition into WT-like structures. 138

The VAE coordinate therefore tracks the degree of foldedness for chromatin and will 139

be referred as the folding coordinate in the following. It provides a fresh perspective on 140

the heterogeneity intrinsic to single-cell imaging data [44]. The seemingly random 141

organizations observed in individual cells are, in fact, interrelated to each other as 142

intermediate states along the folding pathway and only differ in the degree of foldedness. 143

What drives the folding transition in cohesin-depleted cells and why doesn’t chromatin 144

from these cells fully commit to the well-folded WT-like structures? In the next two 145

sections, we attempt to address these questions by examining the free energy landscape 146

of chromatin folding and the correlation between structural ordering and energetic 147

stabilization. 148

Deep generative model recovers the energy landscape of in 149

silico chromatin models 150

An advantage of VAE is that it provides an estimation for the probability of each 151

chromatin structure represented as a binary contact matrix Q. Such estimations offer a 152

link between the machine learning technique with statistical mechanics since the 153

probability is related to the free energy of contact formation (F (Q)) via the Boltzmann 154

distribution P (Q) = Z−1e−βF (Q), where Z is the normalization constant. Before 155

interpreting the folding free energy for chromatin, we first evaluated the accuracy of the 156

VAE probability PVAE(Q) in approximating the actual distribution of molecule 157

conformations, P (Q). 158

It is useful to first clarify the physical meaning of F (Q). Following Wolynes and 159

coworkers [45,46], we decompose the free energy functional into energetic and entropic 160

contributions 161

F [Q] = U [Q]− TS[Q]. (1)

The contact energy U(Q) accounts for the amount of energy released upon contact 162

formation. S(Q), on the other hand, corresponds to homogeneous generic properties 163

and describes the general collapse of a polymer chain of length N . Therefore, when 164

applied to polymer molecules with different chemical properties but of equal length, the 165

variation in contact free energy will be reflected in U(Q) while S(Q) remains the same. 166

The presence of the entropy term in Eq 1 makes the determination of the free energy 167

functional, and correspondingly the comparison with − logPVAE(Q), difficult. One way 168

to circumvent this challenge is to evaluate the difference of the two quantities from a 169
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Fig 4. VAE models reproduce the microscopic energy of in silico polymer
models. (A,B) Representative configurations and average distance matrices for the
reference (A) and the chromatin-like (B) polymer. (C) Comparison between the
interaction energy calculated from VAE, − log[PVAE(Q)/P ref

VAE(Q)], and molecular
dynamics simulations, ∆U [Q]. Energy unit is kBT . The orange line corresponds to a
linear fit to the data.

reference system. In particular, 170

F (Q)− Fref(Q) = [U(Q)− Uref(Q)]− T [S(Q)− Sref(Q)]

≈ U(Q)− Uref(Q) = ∆U(Q).
(2)

The second equation holds if the two polymer systems share similar persistence length 171

and excluded volume effect. In such cases, the microscopic entropic functionals that 172

depends only on generic polymer properties will cancel out. Therefore, if the VAE 173

probability approximates the true distribution well, then the difference between VAE 174

free energies, − log[PVAE(Q)/P ref
VAE(Q)], should reproduce ∆U(Q). 175

To evaluate its accuracy, we applied VAE to two in silico polymer systems for which 176

the contact energy difference of a give molecular conformation can be easily determined. 177

We carried out two computer simulations to collect 3D structures for a reference and a 178

chromatin-like polymer model. The interaction energy in the reference model was 179

fine-tuned to ensure that the average distance between neighboring beads and the 180

overall size of the polymer are comparable to those measured experimentally for 181

chromatin. For the chromatin-like model, in addition to the potential energy defined in 182

the reference system, we introduced attractive interactions for beads within the first and 183

second half of the polymer to promote the formation of domain like structures. 184

Snapshots of the reference and chromatin-like polymers are provided in Figs 4A and 4B, 185

with the simulated average distance matrices shown on the side. Because the two 186

systems share the same basal interactions that define the polymer topology, their 187

entropic functional should be identical. 188
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We then trained two VAE models using a total of 100000 configurations for each 189

polymer. From these two models, we calculated the VAE interaction energy, 190

− log[PVAE(Q)/P ref
VAE(Q)], for each one of the chromatin-like configurations. We further 191

determined the corresponding MD interaction energy, ∆U [Q], by evaluating the 192

potential energy differences in the Cartesian space. As shown in Fig 4C, the two 193

quantities are significantly correlated with each other, with a Pearson correlation 194

coefficient of 0.73 (p-value < 0.001). The slope of the linear fit for the data is slightly 195

larger than 1, with a value of 2.2. This deviation could potentially be a result of the 196

maximization of a lower bound, rather than the true likelihood function in the VAE 197

framework. It is worth mentioning that without removing entropic contributions, the 198

agreement between the VAE free energy, − logPVAE(Q), and the contact energy, U(Q), 199

is much worse (S7 Fig). 200

Balance between enthalpy and entropy dictates TAD formation 201

Next, we applied VAE over the WT and the cohesin-depleted imaging data separately to 202

derive the corresponding chromatin energy landscapes. We note that these landscapes 203

are deemed effective as chromatin exhibits slow dynamics [47–49] and is subject to 204

perturbations driven by ATP-powered molecular motors [50, 51]. Nevertheless, provided 205

that they can reproduce the corresponding steady-state distributions, effective 206

landscapes are powerful concepts for characterizing non-equilibrium systems [52,53]. 207

Before analyzing the derived energies, we performed additional tests for the 208

probability distributions estimated by VAE models and evaluated their accuracy in 209

reproducing the measured statistics of chromatin conformation. First, we simulated a 210

total of 10000 chromatin contact matrices by converting randomly distributed latent 211

space variables into contacts using the VAE decoder networks. From these matrices, we 212

computed the average contact frequencies 〈Qi〉 and the pair-wise correlation between 213

contacts 〈QiQj〉. As shown in Figs 5A-D, values determined from VAE models match 214

well with those from imaging data for both WT and cohesin-depleted cells. It is worth 215

pointing out that a simple independent model fails to capture the cooperativity among 216

chromatin contacts, as evidenced by the deviation between 〈Qi〉 〈Qj〉 and 〈QiQj〉 217

(Figs 5C and D). Finally, we found that VAE models also capture the higher-order 218

collective behavior of chromatin contacts, and the probability distributions of the 219

folding coordinate obtained from simulated contact matrices agree well with the 220

experimental values (Figs 5E and F). 221

Therefore, both the tests on in silico models and the reproducing of experimental 222

data support a quantitative interpretation of the energy landscape inferred from VAE. 223

We next examined the change of various VAE energies along the folding coordinate by 224

averaging the energy over individual chromatin structures from both WT and 225

cohesin-depleted cells. As shown in Fig 6, consistent with the observed low probability 226

of TAD like domains, the free energy, − log[PVAE(Q)], favors unfolded chromatin 227

configurations with negative folding coordinate values for cohesin-depleted cells. 228

However, its difference from the homopolymer free energy introduced in the previous 229

section, − log[PVAE(Q)/P ref
VAE(Q)], becomes more negative along the folding coordinate. 230

This quantity, according to Eq 2, measures the strength of specific interactions in 231

chromatin relative to the generic potential of a homopolymer. Since the homopolymer 232

energy itself is weakly attractive and decreases along the folding coordinate (S8 Fig), 233

the specific chromatin interactions favor folded structures even in cohesin-depleted cells. 234

Therefore, the formation of two-domain like structures is indeed energetically stable but 235

must be penalized by the configurational entropy to result in an overall unfavorable free 236

energy. For WT cells, on the other hand, both the free energy and the potential energy 237

stabilizes TADs over unfolded structures. 238

We note that the free energy, − log[PVAE(Q)], shown in Fig 6 cannot be directly 239
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Fig 5. Comparison between experimental value and predictions from VAE
(A, B) Contact probabilities, (C, D) Contact correlations, and (E, F) Probability
distributions of the folding coordinate. Parts A, C, and E provide results for WT cells,
while parts B, D, and F correspond to the counterparts for cohesin-depleted cells.
Estimations for contact correlations based on an independent model are also provided as
black dots in parts C and D.

compared with the probability distributions shown in Fig 5. In particular, the mixing 240

entropy that quantifies the number of possible configurations at a given folding 241

coordinate must be accounted for when evaluating the probability of a folding 242

coordinate (see Fig. S9). 243

Conclusions and Discussion 244

We applied a state-of-the-art deep learning framework to analyze single-cell imaging 245

data on chromatin organization. By projecting the 3D configurations onto 246

low-dimensional latent variables, we identified a folding coordinate that tracks the 247

progression of TAD formation. Our analysis suggests that the seemingly random 248

structures from individual cohesin-depleted cells can be viewed as intermediate states 249

along the folding transition. Connecting VAE models with the free energy landscape 250

further reconciles the clear intent of folding with the lack of fully commitment. The 251

TAD-like structures remain energetically favorable upon cohesin depletion, driving the 252

formation of chromatin contacts in individual cells. The penalty from the 253
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Fig 6. Variation of the free energy (A) and the interaction energy (B) in
the unit of kBT along the folding coordinate. The interaction energy is estimated
as the free energy difference between the chromatin and a reference polymer as
− log[PVAE(Q)/P ref

VAE(Q)]. See Eq 2 and text for details.

configurational entropy, however, prevents the formation of the full set of contacts to 254

stabilize an entire TAD, resulting in the disappearance of well-defined domains in 255

average distance matrices. 256

What are the physicochemical interactions that stabilize the folded WT-like 257

structures in cohesin-depleted cells? We note that the fraction of cohesin-depleted cells 258

with TAD-like structures exceeds 15%, a significant fraction that cannot be explained 259

with residual cohesin molecules that are expected to be much less than 5% after 260

degradation for 6 hours [34,54]. Numerous studies have demonstrated the importance of 261

phase separation or compartmentalization in genome organization [55–62]. Different 262

regions of the chromatin could adopt distinct post-translational modifications on 263

histone proteins. Such differences, and potentially in combination with the presence of 264

additional intrinsically disordered proteins, could drive the collapse of chromatin into 265

non-overlapping domains in 3D space. An analysis of the underlying combinatorial 266

patterns of twelve histone marks [63] indeed supports this hypothesis. As shown in 267

Fig 7A, the five states defined using the software chromHMM [64] partition the 268

chromatin into active and repress segments at the position corresponding to the TAD 269

boundary. We note that the presence of different chromatin types is not obvious with a 270

coarser classification. As shown in Fig 7B, consistent with the analysis based on Hi-C 271

data [25], this region is assigned as a single active A compartment when only two states 272

were used. The presence of both active and repressive histone marks in the chromatin 273

region indicates that phase separation could be driving the partial TAD formation 274
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Fig 7. Chromatin state analysis reveals the presence of both active and
repressive histone marks in the chromatin region. (A) Results from a five state
analysis, with the state assignment shown at the top, and the relative enrichment of
various histone marks for each state shown below. The position of the TAD boundary is
highlighted with a red arrow. (B) Corresponding results from a two state analysis. The
entire chromatin segment is now assigned to an active state.

observed in cohesin-depleted cells [59, 60,65]. 275

Our study reconciles the seemingly contradictory results from population Hi-C 276

experiments and single-cell imaging. Loop extrusion and contributions from a weak 277

compartmentalization boundary, as revealed by the chromatin state analysis, appear to 278

work in harmony to fold the chromatin region studied here. 279

Because of the complexity of the cell nucleus, the energetic driving forces uncovered 280

in Fig 6 and the corresponding equilibrium interpretation are inherently approximate. 281

Non-equilibrium processes that remodel the chromatin or modify the disordered histone 282

tails could impact chromatin organization and contribute to the thermodynamic 283

quantities extracted from imaging data. A detailed microscopic model of chromatin 284

folding that explicitly considers all the different processes is currently out of reach due 285

to a lack of complete understanding of the various molecular components. In that 286

regard, the approach outlined here is particularly useful as it rigorously accounts for all 287

the contributions in the nucleus while remaining agnostic to the underlying molecular 288

details. As shown in prior studies, such effective equilibrium models can provide 289

accurate descriptions of non-equilibrium steady states in favorable regimes [51,53,66]. 290

Methods 291

Imaging data processing 292

Single-cell super-resolution imaging data were obtained from Ref [34], with a total of 293

11631 and 9526 chromatin structures for WT and cohesin-depleted cells, respectively. 294

Though the experiments were performed at a 30 kb resolution, we carried out all our 295

analysis at the 90 kb resolution for more accurate estimation of the probability 296

distributions from VAE. We built the distance matrices from 3D positions of every third 297

imaged chromatin segments and converted them into binary contacts with a cutoff of 298

450 nm. The contact probability between neighboring genomic segments at the 90 kb 299

resolution is about 0.8. For chromatin segments with missing imaging positions, we 300

filled in the corresponding entries in contact matrices with random numbers generated 301
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based on the sequence-separation specific average contact probabilities derived from 302

imaging data. 303

We performed additional tests to confirm that the results shown in Figs 2 and 3 are 304

robust to the cutoff for binarization (S10 Fig) and resolution of the data (S11 Fig). 305

Boundary score 306

To determine the domain boundary in distance maps, we calculated the boundary score 307

profile using the approach introduced by Lazaris and co-workers [67]. For each genomic 308

loci, we first determined their nearest neighbor (X), upstream (U), and downstream (D) 309

regions that are of 180 kb in length. The boundary score is then determined as dinter
dintra

, 310

where dinter is the mean distance of all contacts in region X. dintra = min(dU, dD) is the 311

minimum average distance of the two neighboring regions. 312

Variational autoencoder 313

We applied VAE both for low dimensional embedding and probability estimation. The 314

imaging data (Q) was compressed into the latent variables, z, with an encoding neural 315

network (q(z|Q)). The latent variables were chosen to maximize their potential in 316

representing the original high dimensional data via the optimization of a decoding 317

network (p(Q|z)) to best reconstruct the original imaging data from them. 318

The probability of a chromatin configuration represented in the binary contact 319

matrix can be formally defined as 320

p(Q) =

∫
p(Q|z)p(z)dz, (3)

where p(z) is the prior distribution for latent variables. We used the following 321

expression to provide a lower bound on the (log) probability 322

logPVAE(Q) , Eq[log p(Q|z)]−DKL[q(z|Q)||p(z)]. (4)

The two terms in the above equations correspond to reconstruction error calculated 323

using cross-entropy and the Kullback-Leibler divergence between the posterior and prior 324

distribution of latent variables. We modeled the prior as a multivariate Gaussian 325

distribution [36]. 326

We implemented VAE models in PyTorch [68] and employed the stochastic gradient 327

descent method with the Adam optimizer [69] to derive parameters with a batch size of 328

500. A total of 1000 epochs with a learning rate of 0.001 was used for model training to 329

ensure the convergence of the loss function. One hidden layer with 200 nodes was used 330

for both the encoding and decoding neural network. 331

We used different number of latent variables to balance the interpretability and 332

accuracy of the resulting VAE models. The value of the folding coordinate for a given 333

chromatin structure was determined with the two-variable model presented in Fig 2. For 334

this model, the resulting latent variables can be easily visualized and their contribution 335

to distinguishing the two cell types can be gauged straightforwardly. To obtain more 336

accurate probability estimations, we separately trained four VAE models with 25 latent 337

variables for the two set of in silico polymer configurations and the chromatin structures 338

from the two cell types. These models were not used to estimate the folding coordinate, 339

but only for the probability and free energy shown in Figs 4, 5, and 6. 340

After model training, the probability for observing a chromatin configuration, 341

PVAE(Q), was estimated using Eq 4. A total of 20 independent samples in the latent 342

space was used to ensure convergence when estimating the expectation values. 343
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Polymer simulations 344

We carried out two 50 million-step-long polymer simulations using the molecular 345

dynamics package LAMMPS [70]. These simulations were performed with reduced units 346

with τ, σ, and ε as the time, length and energy unit, respectively. The timestep was set 347

to dt = 0.01τ . Langevin dynamics with a damping coefficient of γ = 0.5τ was used to 348

maintain the temperature at T = 1.0. We saved polymer structures at every 500 steps 349

to collect a total of 100000 configurations from each simulation. Simulated polymer 350

configurations were then converted to contact matrices with a cutoff of 3.0σ for VAE 351

model parameterization. The cutoff was chosen to ensure that the simulated contact 352

probability between neighboring beads is comparable to the experimental value. 353

The polymer consists of 28 beads to mimic the 2.5 MB long chromatin region at 90 354

kb resolution. The energy function for the reference model is defined as 355

Uref(r) = Ub(r) + Usc(r) + Unb(r). (5)

Ub(r) is the harmonic bonding potential between neighboring beads with an equilibrium 356

distance of 2.0σ and a spring constant of 1.0 ε/σ2. Usc(r) is a soft-core potential 357

applied to all the non-bonded pairs to account for the excluded volume effect and to 358

allow for chain crossing [59]. It is equivalent to a capped off Lennard-Jones potential 359

and only incurs a finite energetic cost for overlapping beads. Unb(r) is a weak collapsing 360

potential with the following form 361

Unb(r) =
∑
i,j

α

2
[1 + tanh (η(rc − rij))] , (6)

where rc = 3.0σ and η = 10.0. α = −0.04ε was chosen such that number of contacts 362

formed by the reference polymer is comparable to that for chromatin. As discussed in 363

the main text, given their equal length and comparable polymer properties, the entropic 364

functional for the in silico polymer should be comparable to that of the real chromatin 365

to ensure the accuracy of Eq 2. 366

Polymer beads in the chromatin-like model experience additional specific 367

interactions besides those defined in Eq 5. In particular, an attractive potential similar 368

to Unb(r) with α = −0.1ε was applied between beads within the first or second half of 369

the polymer to promote domain formation. 370

Supporting information 371

S1 Fig. Probability distributions for chromatin structures from WT and 372

cohesin-depleted cell along the direction perpendicular to the folding 373

coordinate. (i.e., the direction along the SVM decision boundary) 374

S2 Fig. Results from principal component analysis (PCA) of chromatin 375

images. (A) Probability distributions of the first principal component for chromatin 376

structures from WT and cohesin-depleted cells. The KL divergence between the 377

distributions is 1.7. Therefore, compared to the folding coordinate defined in the main 378

text, the principal component performs worse for distinguishing the two cell types. 379

(B,C) Variation of chromatin distance maps along the first principal component for WT 380

(B) and cohesin-depleted cells (C). Values of the first principal component are provided 381

on top of the maps. Boundary score profiles are shown below to highlight the position 382

of TAD boundaries with red arrows. We note that there is a significant difference 383

between the average distance maps from WT and cohesin-depeleted cells at principal 384

component values -1, 1 and 3. These differences indicate that the principal component 385
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fails to recognize the distinction among the structures. No such misassignment occurs 386

for the folding coordinate and the average distance maps from two cell types look 387

remarkably similar, as shown in Fig 3 of the main text. 388

S3 Fig. Results from K-means clustering of chromatin images using a 389

total of 10 clusters. (A) Population of individual clusters for WT and 390

cohesin-depleted cells. The overlap ratio between the two cell types is 21.5%. Therefore, 391

compared to the folding coordinate defined in the main text, the k-means clustering 392

performs worse for distinguishing the two cell types. (B,C) Average chromatin distance 393

maps of individual clusters for WT (B) and cohesin-depleted cells (C). Cluster IDs are 394

provided on top of the maps. Boundary score profiles are shown below to highlight the 395

position of TAD boundaries with red arrows. In accord with our main results, we again 396

found that over 15% of cohein-depleted cells (group 2 and 10) exhibit TAD-like 397

chromatin structures. The average distance maps from the most populated groups (1, 4 398

and 6) are similar to the ones shown in Fig 3 of the main text at various VAE 399

coordinate values as well. Lacking a continuous variable, the physical meaning of the 400

discrete groups and their connection is hard to interpret, however. 401

S4 Fig. Example single-cell distance matrices for WT cells with a folding 402

coordinate of 0.4. 403

S5 Fig. Example single-cell distance matrices for cohesin-depleted cells 404

with a folding coordinate of 0.4. 405

S6 Fig. Example single-cell distance matrices for cohesin-depleted cells 406

with a folding coordinate of -0.4. 407

S7 Fig. Comparison between the VAE free energy (− logPVAE(Q)) and the 408

potential energy used in molecular dynamics simulations (U(Q)) for the 409

chromatin-like polymer (A) and the homopolymer (B). The correlation 410

coefficients between the two energies are -0.32 and -0.15, respectively. Therefore, 411

without removing entropic contributions, the correlation between VAE and MD energy 412

is much worse compared to that shown in Fig 4 of the main text. 413

S8 Fig. Variation of the (A) interaction energy and (B) entropy of the 414

reference polymer in the unit of kBT along the folding coordinate. The 415

energies were estimated using the mean number of contacts found in imaged chromatin 416

structures at various folding coordinates. Since the interaction energy for the reference 417

polymer is nearly the same for different folding coordinates, contributions to the free 418

energy change, ∆F (Q), mainly comes form the entropy, i.e., ∆S(Q) ≈ ∆ logP ref
VAE(Q). 419

S9 Fig. Free energy after considering mixing entropy and probability 420

distributions of the cells along the folding coordinate. Figs 6A and 5E of the 421

main text represent different quantities and are not supposed to agree with each other. 422

In particular, in Fig 6A, we are plotting 〈F (Q)〉q=qo = −〈log[PVAE(Q)〉q=qo . The 423

angular brackets 〈· · · 〉q=qo represent averaging over chromatin structures at a given 424

folding coordinate q. This quantity differs from the free energy at the folding coordinate 425

by the mixing entropy, i.e.F (qo) = 〈F (Q)〉q=qo − TS(qo), where T = 1 is the 426

temperature. The mixing entropy S(qo) accounts for the number of possible 427

configurations Q = {Qij} at the folding coordinate q = qo. Wolynes and coworkers [J. 428

Mol. Biol., 1999, 287:657-674] have introduced an approximate expression the mixing 429
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entropy as S(qo) =
∑
ij Qij(qo) log[Qij(qo)] + (1−Qij(qo)) log[1−Qij(qo)]. Qij(qo) 430

denotes the average contact probability between pairs i and j computed using all 431

chromatin structures with a folding coordinate of qo. Using the above expression for 432

S(qo), we computed F (qo) (A) and the corresponding probability distribution 433

P (qo) = e−F (qo)∫
F (q)dq

(B). As shown here, the resulting probability distributions are in good 434

agreement with Fig 5E and 5F. We note that due to the approximate expression for the 435

mixing entropy, an exact match is not expected. 436

S10 Fig. Folding coordinate definition is robust to the cutoff used to 437

convert distance matrices into binary contacts for VAE model training. 438

Here we show that the results obtained from processing the imaging data at 90kb 439

resolution with a binarization cutoff of 400 nm are comparable to those shown in Figs 2 440

and 3 of the main text. (A) Scatter plot for WT and cohesin-depleted (∆Cohesin) cells 441

in the two-dimensional space of latent variables learned from VAE. The black line 442

represents the decision boundary and the folding coordinate is defined as the distance 443

from the boundary. (B) Probability distributions of the folding coordinate for chromatin 444

structures from WT and cohesin-depleted cells. (C) Correlation between the folding 445

coordinate and the fraction of chromatin segments that form contacts within the TADs 446

determined separately using structures from the two cell types. (D,E) Variation of 447

chromatin distance matrices along the folding coordinate for WT (D) and 448

cohesin-depleted cells (E). Values of the folding coordinate are provided on top of the 449

matrices. Boundary score profiles are shown below the maps to highlight TAD 450

boundaries as peaks. Red arrow marks the segment with the largest boundary score. 451

S11 Fig. Folding coordinate definition is robust to the resolution of 452

imaging data used for VAE model training. Here we show that the results 453

obtained from processing the imaging data at 30kb resolution with a binarization cutoff 454

of 300 nm are comparable to those shown in Figs 2 and 3 of the main text. (A) Scatter 455

plot for WT and cohesin-depleted (∆Cohesin) cells in the two-dimensional space of 456

latent variables learned from VAE. The black line represents the decision boundary and 457

the folding coordinate is defined as the distance from the boundary. (B) Probability 458

distributions of the folding coordinate for chromatin structures from WT and 459

cohesin-depleted cells. (C) Correlation between the folding coordinate and the fraction 460

of chromatin segments that form contacts within the TADs determined separately using 461

structures from the two cell types. (D,E) Variation of chromatin distance matrices along 462

the folding coordinate for WT (D) and cohesin-depleted cells (E). Values of the folding 463

coordinate are provided on top of the matrices. Boundary score profiles are shown 464

below the maps to highlight TAD boundaries as peaks. Red arrow marks the segment 465

with the largest insulation score. 466

S1 Table. Number of WT cells at various values of the folding coordinate. 467

S2 Table. Number of cohesin-depleted cells at various values of the 468

folding coordinate. 469
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